Seismic Analysis of the **Pulsating Subdwarf B Star** EPIC 212508753 Using Data From NASA's Kepler Space Telescope

> JOHN CROOKE MISSOURI STATE UNIVERSITY

Fourier Transform (FT)

Fourier Transform (FT)

Analysis

- Pulsations above or near the detection threshold were examined
 - Known artifacts were ignored

g-modes

•8 n values found

- •Average multiplet splitting of 0.360 μHz
- •Average period spacing of 227.7 ± 1.0 s
 - Short side of average

p-modes

•13 n values identified

•Multiplet splitting of 0.721 μHz

•Example of 1=2

p-modes

•13 n values 'pspec.F6_212508753' u (\$1*1e6):3 0.0629 identified 1.2 •Multiplet splitting 1 of 0.721 μHz 0.8 Amplitude (ppt) •Example of 1=1 0.6 0.4 0.2 0 7226 7226.5 7227 7227.5 7228 7228.5 7229 7229.5 7225.5

Frequency (µHz)

p-modes

•13 n values identified

•Multiplet splitting of 0.721 μHz

•Example of 1=2

Stochastic Oscillations

Sliding Fourier Transforms

- Used to examine change in pulsations over time
- 10 day bins
- 2 day steps

Stochastic Oscillations

Results

•Ledoux Rotational Splitting Relationship: $v_{n,l,m} = v_{n,l,0} + m\Omega(1 - C_{n,l})$

- Ω: Rotation Period
- *C*_{*n*,*l*}: Ledoux Constant
- •g-mode region
 - $C_{n,l} = \frac{1}{l(l+1)} = \frac{1}{2}$
 - $\Delta v = 0.360 \ \mu Hz$ for l,m=1
 - $\Omega \approx 16.1 \ days$
- •p-mode region
 - $C_{n,l} \approx 0$
 - $\Delta v = 0.721 \ \mu Hz$ for m = 1
 - $\Omega \approx 16.1 \ days$
- •Solid-body rotation!

Results

•Spectral analysis done by John Telting of the Nordic Optical Telescope

	sdB Component	Main Sequence Companion Component
T _{eff}	36,320 \pm^{500}_{710} K	$6,457 \pm ^{460}_{560} K$
$\log(g)$	5.62 ± 0.09	$4.419 \pm ^{0.1}_{0.2}$
$log(\frac{nHe}{nH})$	$-0.98\pm^{0.03}_{0.15}$	

•Hottest Kepler-observed sdB pulsator

- •Should not have g-modes; models can't drive them past 24,000 K
- •F7V companion star

Conclusion

•Hybrid pulsator with most power in the p-mode region

•Very unique Kepler-observed sdBV

- Hottest!
- Still has g-modes!
- Shortest pulsation periods!
- Stochastic oscillations!
- Solid-body rotator!
- Relatively short rotation period!

